Explore BTI - Greenhouse at sunrise
Explore BTI
Learn about BTI's history, mission, and latest news.

Impact on Health

At the Boyce Thompson Institute, many of our scientists focus on research that directly relates to human health.

29tomato1-articleLargeFor example, Jim Giovannoni studies the composition and regulation of biochemical pathways that influence shelf-life, appearance, taste, and nutrient content of fruits and vegetables. If more attractive and appetizing produce is available at grocery stores, the hope is people will eat more of this healthy food group. “A lot of our fruit and veggies have been bred for yield, handling and transportwe’ve lost sight of flavor and quality,” says Giovannoni. By understanding the underlying biology of traits important for both production and consumer quality, new breeding targets will be identified that better balance the needs of growers while meeting the quality demands of consumers, thus promoting better food choices.

Meanwhile, Dan Klessig researches how the plant hormone salicylic acid regulates plant immunity. Salicylic acid has been used for millennia as part of herbal-based medicine and for more than a century in the form of aspirin (acetyl salicylic acid) to reduce pain, fever, inflammation, and the risk of heart attack, stroke, and certain cancers. Using knowledge gained from this research his group is now both discovering new targets of aspirin in humans implicated in hepatitis and neurodegenerative diseases, as well as the previously mentioned diseases, and identifying new and much more effective natural or synthetic derivatives of salicylic acid.

Nematode (Caenorhabditis elegans)Finally, Frank Schroeder uses the nematode C. elegans as a model to identify signaling molecules that may hold the key to longer life span and preventing age-associated disease, such as diabetes or Alzheimer’s disease. C. elegans is a perfect model system for the study of human aging because the mechanisms that control life span and metabolism in this tiny roundworm are very similar to those in humans. Recently, the Schroeder lab identified a family of signaling molecules that potently increase life span in C. elegans. Current research focuses on determining the molecular targets of these signaling molecules, which will provide a basis for the design of drug-like molecules that could extend human life span and delay aging-associated decay.