Aleksandra Skirycz

Professor
Lab Number: 210
Office number: 205
Research Overview

Small-molecule regulatory networks – from interactions to function

Small-molecule Regulatory Network

The Small-molecule Regulatory Networks group aims to uncover the function of small molecules. We are especially interested in identifying and characterizing the functionality of metabolites acting at the nexus of metabolism and growth under control (health) and stress (disease) conditions. The group works primarily with Arabidopsis and yeast, but we don’t shy away from other model and non-model organisms. The long-term goal of our research is to apply our findings to improve plant and animal health.

Living organisms are outstanding organic chemists, producing diverse small-molecule compounds that cover vast structural and functional diversity. These compounds – called metabolites – are central to all biological processes, from structural elements and energy sources, to regulators and signals. Not surprisingly, natural compounds constitute an essential source of drugs and agrochemicals. Yet, the metabolome remains largely terra incognita.

Why the mystery? First of all, we do not understand the full chemical complexity of even well-studied model organisms. Secondly, we often do not understand the function of the metabolites we do know, while new roles are constantly being assigned to central compounds such as amino acids and sugars.

How do you identify the function of a metabolite? Small molecules rarely work on their own but rather via interactions with proteins. Thus, following the proverbial “tell me who your friends are, and I will tell you who you are,” identification of protein interactors can be used to unravel the function of a metabolite.

How do you identify metabolite–protein interactions? To gain insight into the function of small molecules, the Small-molecule Regulatory Networks group uses a unique experimental toolbox, which enables metabolite–protein–protein interaction studies on a cell-wide scale and in near-in vivo conditions. We combine classical biochemistry with state-of-the-art mass spectrometry metabolomic and proteomic methods, and use computational tools to generate and mine metabolite–protein interaction networks.

The group originated at the Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany, where it will continue as a partner guest group until March 2022. https://www.mpimp-golm.mpg.de/2218806/skirycz

  • Cluster Hire Yields Three New Faculty Members

    Boyce Thompson Institute is pleased to announce the hiring of three faculty members as part of its new and innovative “cluster hire” approach. Out of 113 applicants, the three people who will join BTI over the next year are: Magdalena (Magda) Julkowska, a postdoctoral fellow at King Abdullah University of Science and Technology in Saudi […] Read more »
Functional characterization of proton antiport regulation in the thylakoid membrane
2021.
Uflewski, M., Mielke, S., Galvis, V.C., von Bismarck, T., Chen, X., Tietz, E., Ruß, J., Luzarowski,…
Plant Physiol..
:
A Multi-OMICs Approach Sheds Light on the Higher Yield Phenotype and Enhanced Abiotic Stress Tolerance in Tobacco Lines Expressing the Carrot lycopene β-cyclase1 Gene
2021.
Moreno, J.C., Martinez-Jaime, S., Kosmacz, M., Sokolowska, E.M., Schulz, P., Fischer, A., Luzarowska…
Front Plant Sci.
12
:
Global mapping of protein–metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity
2021.
Luzarowski, M., Vicente, R., Kiselev, A., Wagner, M., Schlossarek, D., Erban, A., de Souza, L.P., Ch…
Communications Biology.
4
:
Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms
2020.
Lechowicz, K., Pawlowicz, I., Perlikowski, D., Arasimowicz-Jelonek, M., Blicharz, S., Skirycz, Aleks…
Int J Mol Sci.
:
Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1
2020.
Tirumalaikumar, V.P., Gorka, M., Schulz, K., Maxclaux-Daubresse, C., Sampathkumar, A., Skirycz, Alek…
Authphagy.
:
Identification and Characterization of the Heat-Induced Plastidial Stress Granules Reveal New Insight Into Arabidopsis Stress Response
2020.
Chodasiewicz, M., Sokolowska, E.M., Nelson-Dittrich, Anna C., Masiuk, A., Beltran, J.C.M., Nelson, A…
Front Plant Sci..
11
:
Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis thaliana
2020.
Thirumalaikumar, V.P., Wagner, M., Balazadeh, S., Skirycz, Aleksandra
FEBS J..
:
An Abundance and Interaction Encyclopedia of Plant Protein Function
2020.
Zhang, Y., Skirycz, Aleksandra, Fernie, A.R.
Trends Plant Sci.
:
The Isolation of Stress Granules From Plant Material
2020.
Kosmacz, M., Skirycz, Aleksandra
Curr Protoc Plant Biol.
:
Towards a functional understanding of the plant metabolome
2020.
Kosmacz, M., Sokolowska, E.M., Bouzaa, S., Skirycz, Aleksandra
:
Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex
2019.
Perlikowski, D., Augustyniak, A., Masajada, K., Skirycz, Aleksandra, Soja, A.M., Michaelis, A., Wolt…
Plant Sci..
:
Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli
2019.
Zupok, A., Gorka, M., Siemiatkowska, B., Skirycz, Aleksandra, Leimkuhler, S.
J Bacteriol.
:
Protein Complex Identification and quantitative complexome by CN-PAGE
2019.
Gorka, M., Swart, C., Siemiatkowska, B., Martinez-Jaime, S., Skirycz, Aleksandra, Sterb, S., Graf, A…
Sci Rep..
:
Protein and metabolite composition of Arabidopsis stress granules
2019.
Kosmacz, M., Gorka, M., Schmidt, S., Luzarowski, M., Moreno, J.C., Szlachetko, J., Leniak, E., Sokol…
New Phytol..
:
Emerging strategies for the identification of protein-metabolite interactions
2019.
Luzarowski, M., Skirycz, Aleksandra
J Exp Bot.
:
PROMIS, global analysis of PROtein-metabolite interactions using size separation in Arabidopsis thaliana
2018.
Veyel, D., Sokolowska, E.M., Moreno, J.C., Kierszniowska, S., Cichon, J., Wojciechowska, I., Luzarow…
J Biol Chem.
:
Interaction of 2′,3′-cAMP with Rbp47b Plays a Role in Stress Granule Formation
2018.
Kosmacz, M., Luzarowski, M., Kerber, O., Leniak, E., Gutierrez-Beltran, E., Moreno, J.C., Borka, M.,…
Plant Physiol.
:
Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases
2017.
Luzarowski, M., Kosmacz, M., Sokolowska, E., Jasinska, W., Willmitzer, L., Veyel, D., Skirycz, Aleks…
J Exp Bot.
:
System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants
2017.
Veyel, D., Kierszniowska, S., Kosmacz, M., Sokolwska, E.M., Michaelis, A., Luzarowski, M., Szlachetk…
:
Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado?
2016.
Skirycz, Aleksandra, Kierszniowska, S., Meret, M., Willmitzer, L., Tzotzos, G.
:
 

Contact:

Boyce Thompson Institute
533 Tower Rd.
Ithaca, NY 14853
607.254.1234
contact@btiscience.org